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Abstract

Despite tremendous effort to train visual recognition sys-
tems without human supervision, there is still no substi-
tute for large, labeled training datasets. We perform a
large-scale analysis to quantitatively understand the differ-
ence between the representations learned by self-supervised
learning and supervised learning. Adopting a large collec-
tion of trained models for different computer vision tasks,
we probe for functional similarities between visual recog-
nition systems. Experiments and visualizations suggest that
two key differences between self-supervised and supervised
models are its representations for 3D geometry and de-
formable objects, which also substantially contribute to its
failures. Our hope is that such analysis will expose future
research directions in self-supervised visual learning.

1. Introduction

Although there has been striking progress in visual
recognition in the last decade, computer vision models still
require large amounts of labeled training data [31]. This
challenge has led a surge of research to develop approaches
for self-supervised representation learning [7, 9, 41, 24,
11, 23] in order to learn visual features without a sub-
stantial amount of human supervision. Although lacking
ground-truth labels, unlabeled visual data naturally has con-
text, such as spatial arrangement [9, 22], temporal order
[36, 20], or cross-modal synchronization [24, 3]. Leverag-
ing these incidental relationships to create pre-training tasks
has emerged as a popular paradigm to learn visual features.

However, despite tremendous effort, there is still no sub-
stitute for large, labeled datasets. Figure 1 illustrates ex-
amples where self-supervised representations still perform
worse than supervised representations. However, collecting
and annotating large datasets for each computer vision task
is not scalable in practice, and limits the versatility of vi-
sual recognition. Since the performance of self-supervised
visual models lags behind that of their supervised counter-
parts often by considerable margins, we ask the question:
what is missing from self-supervised visual learning?

We present a large-scale empirical analysis to uncover
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Figure 1: Diagnosing Self-supervised Learning: We show
object class predictions using supervised features and self-
supervised features. What is different about self-supervised
representations?

what supervised models are learning that self-supervised
models do not. Adopting a large collection of neural net-
works trained on computer vision tasks, we use recent meth-
ods [26, 28] to visualize and interpret neural networks in
order to look “under the hood” of the self-supervised rep-
resentation learning. However, in order to efficiently scale
up and make our analysis automatic, we formulate our ap-
proach as a question of similarity between the representa-
tions learned by the models. By comparing the representa-
tions of supervised, self-supervised, and a bank of models,
we can estimate what self-supervised features are learning,
and more importantly, what they may miss.

Our experiments and visualizations provide a window
into some of the functional shortcomings of current self-
supervised representations. Our results show that, unsur-
prisingly, all self-supervised representations that we ana-
lyze lack strong representations for the object and scene se-
mantics. However, since our approach to interpret the rep-
resentation is comparison-based, we are also able to rank
which tasks are the most similar and dissimilar to current
self-supervised representations. For example, our analysis
suggests that supervised models are better at learning 3D
representations than self-supervised models, supporting that
incorporating 3D into self-supervised learning remains an
important research direction. Moreover, deformable objects
remain challenging to represent for self-supervised models,
and that self-supervised models share much more in com-
mon among themselves than they do with the supervised
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Figure 2: Task Performance Correlation: We plot per-
formance of ImageNet accuracy versus performance of pre-
text task for some self-supervised methods. An increase
in pretext task performance is highly correlated with an in-
crease in transferred feature performance (Pearson correla-
tion of 0.87). This suggests that self-supervised representa-
tion learning should be a reasonable approach. Why is there
still a performance gap?

model trained for classification.
Figure 2 shows relative performance on pretext tasks

is predictive of object recognition performance, suggesting
that there are useful learning signals from self-supervised
tasks. However, in practice, there are still large gaps in per-
formance. Our goal is to understand from where this gap
may come, and this paper is organized around investigat-
ing four questions that we will experimentally analyze. In
section 2, we first review related work. Next, we tackle the
question of analyzing characteristics of a supervised classi-
fication model, before delving into the next, a quantitative
comparison of missing elements in self-supervised models.
Following that, we attempt to evaluate the quality of self-
supervised tasks with respect to its general capabilities and
performance results. Finally, we analyze the attention maps
of self-supervised and supervised models to analyze their
behavior. Our hope is that this analysis will spur the next
wave of research in self-supervised visual learning. We plan
to release all code, data, and results.

2. Related Work

Analyzing Visual Recognition: This paper contributes
to a large body of inquiry to analyze visual recognition sys-
tems. Due to the complexity of modern computer vision
systems and their opaque failures, several works have fo-
cused on diagnosing the errors that visual recognition sys-
tems make [13, 25, 33]. Other work has studied the im-

pact of training data, such as the size of the dataset [44, 31]
or choice of the dataset [16, 32]. Several works have also
studied the learned models directly [29, 19, 18, 2, 39]. In
a related vein, several meta-analysis of problems in com-
puter vision have been conducted [27, 6]. This paper is also
analyzing visual recognition systems, however our focus is
on self-supervised learning. Due to the practical impacts
of learning without human supervision and the gaps in per-
formance to supervised models, our hope is that this analy-
sis will provide intuition for where self-supervised learning
should go next.

Visualizing and Interpreting Models: The topic of in-
terpreting neural networks have long been a subject of dis-
cussion. We build off an extensive line of research to de-
velop tools to visualize and interpret neural networks, which
provides the foundation for this study. In this paper, we
would like to answer both the high level question of what
tasks a model is performing, as well as finer granularity
questions on specific characteristics of inputs that a model
attends to. Common visualization techniques includes high-
lighting the most important portions of a image (saliency),
parts of the original image that cause the most variation
in network output (backpropagation), and parts of a image
that contributes most to a classification (Grad-CAM) [28].
There are many variants of these techniques that adjust the
regions highlighted. One disadvantage of visual analysis is
that it depends on humans to observe patterns in visualiza-
tion. Network dissection [4] quantitatively explores these
patterns by computing IoU scores between neuron activa-
tions and labeled ground truth. Similar veins of work re-
late activations in recurrent networks to linguistic forms in
the the context of natural language processing [14]. Lastly,
recent techniques such as SVCCA [26] and PWCCA [21]
enable the direct comparison of neural networks through
their intermediate representations. In this paper, we use a
combination of SVCCA and PCA to obtain high level in-
terpretations of the entire model, as well as Grad-CAM and
backpropagation techniques to analyze classification specif-
ically.

Self-supervised Learning: The focus of this paper is to
analyze self-supervised visual models and understand the
reasons why their performance is lower than supervised
models. Although self-supervised learning is twenty five
years old, first proposed by de Sa in 1994 [7], there recently
has been significant interest in this problem. A common
approach has been to remove some already available infor-
mation about image data and train a network to predict it.
For example, images may be split up into grids and shuf-
fled, or grid tiles’ relative positions obscured [9, 22]; color
[41, 17, 35] information may be removed and predicted;
or orientation may be changed [11]. Other approaches
use video to attempt to predict object motion [36, 34] and
ego-motion [43, 1], learn similar representation for tracked



objects across frames [37], or leverage sound information
[24, 3]. Networks have also been trained to count ob-
ject entities [23], encode cross-channel information to re-
construct images [42], learn transitive invariance [38], and
fuse multiple pretext tasks to improve performance [10].
Our work selects three self-supervised tasks that take di-
verse approaches to feature learning, are easy to understand,
and provide state-of-the-art performance when transferred
to ImageNet classification.

3. What tasks does an ImageNet classification
model need to learn?

Before we can analyze what may be missing from self-
supervised representations, we must first determine what
supervised models learn.

How should we analyze neural networks to find out
what they learn? We can functionally characterize what a
model learns by comparing it with models trained on other
visual tasks. If our classification network is similar to, e.g.,
an edge detection network according to a reasonable met-
ric, we can say that the classification network has learned
edge detection. The Taskonomy task bank [40] contains a
set of pre-trained visual task estimators. From these, we
pick twenty to serve as the tasks we test our classification
network against.

To facilitate comparison with self-supervised models
later, we train an ImageNet classifier with the AlexNet ar-
chitecture [15, 8]. All models from the Taskonomy test
bank have identical-architecture encoders (4 ResNet [12]
blocks) and shallow decoders with varied architecture. To
facilitate comparisons across tasks, we thus focus on the
task encoder networks. Although there could be issues
with dataset bias because ImageNet and Taskonomy are
likely different distributions of images [32], we empirically
found the ImageNet models generalize to Taskonomy im-
ages without accuracy loss, suggesting these models are not
impacted by domain shift.

We estimate the similarity between representation A and
representation B of two neural networks by observing that
the two neural networks are providing different views of
the same input data. To measure similarity, rather than us-
ing naive Euclidean distance, which is sensitive to arbitrary
transformations that could be applied to network weights
without changing behavior, we build off [26, 21] and use an
adaptation of Canonical Correlation Analysis (CCA). CCA
is invariant to affine transformations common to convolu-
tion layers and has been shown to work in these settings.

We can score the similarity between these neural-net
views of data by finding the low-dimensional subspace with
maximal linear correlation between the two views. More
formally, let X ∈ RD×N be a matrix of hidden activations
from one network with D dimensional features over N ex-
amples. Likewise, let Y ∈ RD′×N be another matrix of hid-
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Figure 3: What are supervised models learning? We
plot the similarity (vertical axis) between a bank of models
(horizontal) with an ImageNet-supervised network (orange
bars) and a network with random weights (blue bars). The
tasks that are most useful for ImageNet classification will
have a higher orange bar than blue bar. For visualization
purposes, we lighten the bars where the difference is small
or negative.

den activations. We define the distance between these net-
works to be maxw,u corr

(
wTX,uTY

)
where w ∈ RD×K

is a projection matrix. This is the standard CCA objective
and can be solved with off-the-shelf solvers.1 It is empiri-
cally shown that convolution layers at different depths learn
different features. As such, we match the layers of AlexNet
and ResNet by depth 2, and define the CCA score of two
networks to be the average CCA score across all pairs.

Which classical tasks best correlate with a supervised
classification network? Figure 3 shows the similarities of a
fully supervised classification network and a network with
random weights with classical computer vision tasks. As
expected, tasks with the highest similarity are object and
scene classification, whereas tasks with the lowest similar-

1We use N = 120 since we found our results did not change much
with larger N . With N = 120, the standard error of CCA scores computed
from 10 different batches is 0.005 per comparison. We also use K = 20.
Optimization typically took 4 hours on a multi-core server. As we are
working with images, we use layer-wise comparisons across convolution
layers. We resize the height and width of intermediate layer activations on
each datapoint to 32x32 before flattening, giving D = 1024 · 120. We
treat each channel of the intermediate representation as a dimension of X
and Y , giving us num channels ×D matrices.

2That is, we pair conv i of self-supervised or supervised AlexNets
with block i of the task networks, for i=1,...,4. We do not compare
conv5 with the final output layer of the encoder due to a large mismatch
in dimensionality which led to unreliable results.



ity - even lower than that of a random network - are au-
toencoding and denoising, tasks which try to preserve the
internal representation of a scene with no requirement of
semantic understanding. Random networks show a similar-
ity score of approximately 0.2 in our calculations, providing
a baseline for all measurements.

Answer: We observe that the supervised model is sig-
nificantly closer than a random net to 13 task networks that
we analyze (e.g. 3D edges, surface normal estimation, and
instance segmentation), suggesting that the supervised net-
work learns features related to these tasks. Tasks in our task
bank can be roughly grouped into semantic, lower-level,
2D, and 3D vision tasks. We observe that other than seman-
tic tasks, the supervised network exhibits significant sim-
ilarity to many 3D scene understanding tasks (reshading,
distance estimation, curvature, 2.5D segmentation, depth
estimation, etc.).

4. What tasks do self-supervised models not
learn?

After establishing that the representations from fully su-
pervised models are related to the tasks in our task bank, we
would like to identify which of these tasks self-supervised
models are not learning as well. For example, we expect
that a network trained to piece a jigsaw together should be
able to detect edges well, a capability which could transfer
to object classification.

To form a collection of self-supervised models, we
implement and train self-supervised networks with the
AlexNet architecture using the ImageNet dataset. We fix
as many hyper-parameters as possible to enable an “apples-
to-apples” comparison. We consider three self-supervised
models: rotation [11], counting [23], and jigsaw puzzle
solving task [22]. These tasks represent three different ap-
proaches to pretext tasks (learning of orientation, object
presence, and object part relationships respectively), and
make up the current state-of-the-art in feature transfer to
image classification. We train the rotation network to 87%
accuarcy on its task, the jigsaw network to 92%, and the
counting network to 0.03 loss.

How do these similarities differ for the self-
supervised networks? Following the same procedure in
the previous section for supervised networks, we can use
CCA to estimate the similarity between the representations
of self-supervised models and other models. Since we are
interested in what is missing, we can plot the differences
of similarities. Figure 4 visualizes the difference between
CCA scores for the self-supervised and supervised networks
conditioned on a task bank. In this plot, the higher (and
more red) the difference, the more the self-supervised repre-
sentation is missing that particular task. We order the tasks
on the y-axis according to their transfer classification accu-
racy with the rotation network, which is the state-of-the-art
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Figure 4: What’s missing from self-supervised learn-
ing? We plot the difference between supervised and self-
supervised CCA similarities for visual tasks. Red cells in-
dicate that a self-supervised model correlates less with the
task than a supervised model. Likewise, green cells indi-
cate that a self-supervised model is closer to the task than
a supervised model. This plot suggests that self-supervised
representations are lacking information about object seman-
tics and 3D geometry.

in self-supervised representation learning. Tasks along the
x-axis are ordered according to how much they are missing
from the rotation network, the strongest of the three self-
supervised nets we examine.

These results suggest that semantic tasks such as ob-
ject and scene classification are missing most from self-
supervised networks. After those tasks, tasks requiring
an understanding of three-dimensional geometry are most
lacking: distance, 3D edge, and depth estimation are no-
tably absent from self-supervised net when compared to
the supervised net. Figure 3 suggests that autoencoders,
in-painting networks and denoising networks do not con-
tribute much to classification accuracy. The fact that self-
supervised models show some correlation with these tasks
while supervised models do not suggests that these most
self-supervised learning approaches are actually closer in
representation space to autoencoders than supervised mod-
els. We also observe from the plot that tasks which the self-
supervised networks are relatively strongest on early vision
tasks such as 2D keypoint estimation and edge estimation.
Counting as a task certainly miss the most, which explains
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Figure 5: Comparing Confusions: We show confusion
matrices for all networks. Stronger representations have a
more block-diagonal confusion matrix, displaying better hi-
erarchical understanding. Matrices are generated by chart-
ing the top 5 predictions for each ImageNet image, to show
prediction variation. When the correct label is in the top
5 predictions, the prediction is treated as correct and only
the diagonal cell is incremented. Otherwise, all cells corre-
sponding to top 5 predictions are. To facilitate visualization,
the matrices are binarized such that cells for any class pre-
dicted at least once are activated. 74% of supervised predic-
tions are within block-diagonal sections, compared to 64%
for rotation, 58% for jigsaw, and 41% for counting.

it low transfer accuracy.

5. How transferable are self-supervised fea-
tures?

Self-supervised representation learning attempts to find
an input embedding space useful for some downstream task.
The common scenario in computer vision tries to find fea-
tures good for transfer onto image classification using a
standard dataset such as ImageNet. There has been intense
interest in finding tasks that, while not requiring manual
annotation, learn features that yield high classification ac-
curacy when transferred or fine-tuned. Inspired by previ-
ous work [39], we study the practical performance of self-
supervised representations by using them as input to linear
regression models trained on the desired task, in this case,
image classification.

To ensure a fair comparison between all self-supervised
tasks, we freeze all learned AlexNet weights up to conv3,
the layer with highest transfer performance reported in ev-
ery self-supervised task we use, and train one fully con-
nected linear layer on ImageNet classification using the em-
beddings given by the conv3 features. Features with better
semantic information will allow the regression to better dis-
criminate between classes.

Vultures Ostriches

Cartons Space bars

Figure 6: What makes some classes harder for self-
supervision? Random samples of instances from con-
fusing (top) and less confusing (bottom) classes for self-
supervised networks. We observe a greater degree of intra-
class variation and deformability in failure modes than in
success modes, indicating that self-supervised representa-
tions struggle to understand more complex classes.

We examine the results of these linear regression mod-
els as well as consider class confusion from a hierarchi-
cal perspective, examining whether self-supervised features
learn coarse object category discrimination. We also find
types of objects that are particularly confusing across all
self-supervised representations. We analyze performance of
learned features as pretext training progresses, investigating
whether getting better at the self-supervised task necessarily
means learning better features.

What are common confusions from self-supervision?
Previous work [5, 8] shows that many mistakes that super-
vised neural networks make in classification are confusions
within some meaningful semantic class. For example, there
are 120 dog breeds in ImageNet, and a discriminative model
that confuses them might be forgiven since it still learned
some higher-level desirable object understanding.

To analyze this for self-supervised representations, we
calculate confusion matrices across all 1,000 ImageNet
classes for each network. The classes are ordered by po-
sition in the WordNet hierarchy tree, such that tasks under
the same node in the tree are nearby in the confusion matrix.
We visualize these confusion matrices in Figure 5. These
matrices show that the better the representation, the better
the hierarchical understanding and the more block-diagonal
the confusion matrix. A better self-supervised pretext task
may be one that explicitly targets the learning of such fine-
grained semantic information.

We also examine the most and least confusing classes for
each network in Table 1. More than two-thirds of classes



Network Class Performance Gap Network Class Performance Gap Network Class Performance Gap

Rotation Vulture∗ (Bald eagle) 0.64 Jigsaw Ostrich∗ (Meerkat) 0.82 Counting Cliff dwelling† (Newt) 0.88
Hen∗ (Gamecock) 0.58 Spoonbill∗ (Egret) 0.78 Proboscis monkey∗ (Jaguar) 0.86
Fig (Granny Smith apple) 0.58 Albatross∗ (Gray whale) 0.76 Ostrich∗ (Tiger beetle) 0.84
English spaniel∗ (St. Bernard) 0.58 Pomeranian∗ (Persian cat) 0.74 Spoonbill∗ (Flamingo) 0.8
Marimba† (Carousel) 0.58 Mountain tent† (Alp) 0.74 Three-toed sloth∗ (Koala) 0.8
Coral reef -0.02 Promontory 0 Screwdriver† 0.04
Mortarboard† -0.04 Overskirt† -0.02 Spatula† 0.02
Dishrag† -0.04 Appenzeller∗ -0.02 Hook† 0.02
Space bar† -0.06 Coral reef -0.02 Velvet† 0
Carton† -0.06 Space bar† -0.04 Chiffonier† 0

Table 1: Strongest and weakest classes for each self-supervised representation compared to the fully supervised network.
Most common confusions for the weakest classes are listed in parentheses. The difference column is equal to supervised
accuracy minus self-supervised accuracy, so higher figures indicate weaker classes for the self-supervised networks and vice
versa. Classes marked with an ∗ are animals and those with a † are artifacts. 11

15 of the weakest classes for self-supervised
nets are animals, whereas 11

15 of the strongest classes are artifacts.

where self-supervised nets perform worst belong to the an-
imal subtree of the ImageNet hierarchy. Similarly, more
than two-thirds of the best classes for self-supervised nets
are artifacts (i.e. manmade objects) which are shallower
in the ImageNet hierarchy by approximately 1.1 levels on
average. These classes tend to exhibit a lower degree of
deformability and variance. This suggests self-supervised
networks struggle with highly specific classes that vary sig-
nificantly in their appearance (in ImageNet, such classes are
mostly animals), as visualized in Figure 6. We also note that
fine-grained class discrimination may be a harsh metric for
evaluating the quality of learned representations.

Should we go bigger with our data? We investi-
gate whether self-supervised learning can take advantage of
large unlabeled datasets by comparing the networks’ per-
formance on pretext tasks to performance of linear regres-
sion layers using representations at various stages of pre-
text training. In particular, we train using features at epochs
corresponding to 20, 40, 60, 80, and 100% of final accu-
racy, and observe how relative performance on classification
changes. For an ideal pretext task which can take advan-
tage of large sources of unlabeled data, improving accuracy
would strongly correlate with improving quality of repre-
sentation, since otherwise the task would saturate the utility
of the dataset early. We plot relative performance on the
pretext task and on transferred classification for each of the
three self-supervised networks in Figure 2. These findings
suggest that we would benefit from using datasets orders of
magnitude larger than ImageNet, such as [31], to provide
models with further semantic understanding.

Answer: Figure 2 suggests that self-supervised repre-
sentations tend to transfer well, as transferred classifica-
tion performance improves with pretext training progress,
indicating that there may be still be signal left in existing
self-supervised techniques. We hypothesize that scaling up
datasets even by several orders of magnitude may help fur-
ther push this boundary. An analysis of classification re-
sults shows that poorer performance of self-supervised net-

Network Metric Top three Bottom three
Rotation IoU ocean liner; container ship; lifeboat jellyfish; parachute; theater curtain

Spearman aircraft carrier; mosque; lifeboat T-shirt; theater curtain; armadillo
Sharpness killer whale; geyser; airship rickshaw; slot machine; ambulance

Jigsaw IoU container ship; ocean liner; salamander Leonberg; koala; jellyfish
Spearman school bus; lifeboat; aircraft carrier Leonberg; vault; T-shirt
Sharpness geyser; killer whale; mosquito net hockey puck; odometer; ambulance

Counting IoU ocean liner; container ship; lifeboat jellyfish; parachute; T-shirt
Spearman school bus; rapeseed; ear of corn jellyfish; stingray; platypus
Sharpness nipple; website; geyser slot machine; football helmet; ambulance

Supervised Sharpness indigo bird; house finch; bee eater cauliflower; mashed potato; carbonara

Table 2: Top and bottom three ImageNet classes for various
attention metrics. The supervised net is sharpest on animal
classes with high specificity. Self-supervised networks at-
tend most similarly to the supervised net on artifacts and
least similarly on animals.

Network IoU Spearman’s ρ Sharpness
Rotation 0.139 ± 0.100 -0.080 ± 0.091 0.557 ± 0.157
Jigsaw 0.125 ± 0.102 -0.051 ± 0.087 0.680 ± 0.138
Counting 0.150 ± 0.102 -0.021 ± 0.077 0.535 ± 0.187
Supervised 1.000 ± 0.000 1.000 ± 0.000 0.823 ± 0.093

Table 3: This table compares the attention maps of super-
vised and self-supervised representations. For all metrics,
higher is better. In particular, Spearman rank correlation
with the supervised network is statistically insignificant.

works is likely due to missing semantic, hierarchical un-
derstanding. Object groups that are most confusing to self-
supervised networks are those deeper in the ImageNet class
tree, and the misclassifications of stronger representations
are more constrained to coarse class groups (e.g. structure,
vehicle, bird, fish). This may suggest that, if ImageNet is
the goal, a promising direction for future self-supervised
tasks could involve a better awareness of object hierarchy.
Further, many of these confusing classes exhibit a high de-
gree of deformability and variance, suggesting that self-
supervised tasks trained with this in mind may be useful.



Rotation

Jigsaw

Counting

Supervised

1.0

0.8

0.6

0.4

0.2

0.0

Figure 7: Calculating Attention Similarity: Intersection
over union and Spearman’s rank correlation calculated over
all network pairs. Self-supervised networks all attend simi-
larly to each other, but differently from the supervised net.

6. Do self-supervised and supervised models at-
tend to similar spatial regions?

If two visual models attend to different regions in the
same image to make their prediction, they have learned dif-
ferent internal representations. By analyzing these the sim-
ilarities and differences of the learned attention maps, we
can gain insight into what self-supervised models are miss-
ing in comparison to the supervised counterparts.

What do they attend to? We investigate this question
using guided backpropagation [30] and gradient-weighted
class activation mapping [28], which provide local and
global information on which image regions are important
to the model’s decision-making. Fig. 8 visualizes the acti-
vations of all networks on a random sample of images from
ImageNet. Despite extensive data preprocessing across self-
supervised tasks, some biases are notable in the attention
maps. The jigsaw network does not learn to understand
color, since it is heavily regularized against using chro-
matic aberration to solve puzzles. The counting network
learns features which appear to be texture-invariant, but de-
tect repetitive image areas (e.g. row 3 in refrigerator or row
4 in pretzel in Figure 8), for similar reasons. The rotation
network, which performs best out of the three, has features
most qualitatively similar to the supervised network, but
still shows some oversensitivity to edges and other telltale
signs of orientation (e.g. row 3 in soup bowl). Attempting
to prevent shortcuts in or overfitting to the pretext training
stage may prevent neural networks from learning useful im-
age features for downstream tasks such as classification.

Good and bad attention: In Figure 9, we show bina-
rized attention maps for the supervised and self-supervised
networks on their strongest and weakest classes (which tend
to be animals and artifacts, respectively, as shown in Table
1). What are self-supervised networks paying attention to
when they succeed and when they fail? We see that su-
pervised networks are able to focus on very small parts
of the image that allow for discrimination between simi-

lar classes, whereas self-supervised networks tend to focus
on whole objects or object parts. Success modes for the
self-supervised networks occur in classes shallower in the
WordNet hierarchy , demonstrating that a lack of semantic
knowledge hinders self-supervised attention. However, re-
gions highlighted by self-supervised features may be more
informative to humans (see e.g. the third row of Figure 9
where, despite misclassification, the entire carton and chif-
fonier are highlighted).

Quantifying similarity: We select two metrics to nu-
merically analyze attention between neural networks: inter-
section over union on binarized normalized attention maps
(all locations with >50% of max attention get a value of 1)
and Spearman’s rank correlation on the 13×13 magnitudes
assigned to locations in the output of each net’s conv5
layer. Table 3 shows IoU and Spearman’s rank correlation
coefficient for all networks. All three self-supervised nets
are well within a standard deviation of each other in IoU
and rank correlation with the supervised network. That is,
none of the self-supervised tasks attends significantly bet-
ter than the others, and none attends remotely similarly to
the supervised network. The rank correlation shows that
the self-supervised networks are (if barely) slightly nega-
tively correlated with the supervised networks in how they
attend to data. Figure 7 shows the IoU and Spearman for all
network pairs; self-supervised networks attend much more
similarly to each other than to the supervised network.

Sharpness of attention focus: To investigate the hy-
pothesis that a better network with more semantic in-
formation has a more concentrated attention distribution,
we would expect a supervised network to be significantly
sharper in focus than a self-supervised one. We consider a
proxy metric for the non-uniformity of the attention distri-
bution: the sharper a peak this distribution has, the surer a
net is in its attention. We define sharpness as the percentage
of the image with a relative attention below one half.

Table 3 suggests that the supervised attention is sharper
and more consistent than self-supervised attention (the stan-
dard error of the measure is around half that of the self-
supervised nets). Table 2 shows the classes with highest
and lowest values for each of the quantitative metrics used.
The supervised network’s attention is sharpest on very taxo-
nomically specific animals and most diffuse on generic food
items with less distinctive properties.

Answer: Our quantitative and qualitative results demon-
strate that self-supervised networks exhibit no significant
correlation with the attention of fully-supervised networks,
whether in the coarse (binned rank-correlation) or fine (IoU)
resolution. Self-supervised features are also unable to con-
fidently attend to salient, semantic image regions. We ob-
serve that in many classification cases, the supervised fea-
tures only focus on uninformative (to humans) and hyper-
discriminative image regions while the self-supervised nets



Figure 8: Comparing Attention Maps: Guided Grad-CAM maps for supervised and self-supervised networks on randomly
selected ImageNet images (with increased contrast for easier visualization). Despite the supervised regression layer, each
self-supervised network’s attention patterns are biased towards its pretext task. Figure best viewed zoomed in and in color.
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Figure 9: Attention Regions in Success and Failure: Binarized Grad-CAM maps for supervised and self-supervised net-
works on random ImageNet images from top and bottom classes for each network (see Table 1). The first two rows are
images from the weakest class for each network, the bottom two from the strongest. Self-supervised representations struggle
to focus on regions that allow distinguishing animals and other objects appearing in natural scenes, but have less trouble
classifying manmade artifacts. Best viewed zoomed in and in color.

may provide a more natural, interpretable attention mecha-
nism, at the expense of performance. By every metric, self-
supervised networks are far more similar to each other in
their attention than to a supervised classification network.

7. Discussion
Evaluation of self-supervised visual representations have

typically focused on measuring the performance on down-
stream recognition tasks, such as image classification or ob-
ject detection. However, this evaluation is fairly limited
because it only quantitatively analyzes the end-to-end task
performance. Instead, our work suggests that comparison-
based evaluations on the hidden representations can provide
a refined analysis of self-supervised learning. Our hope is

that this analysis will enable us to not only quantify emer-
gent behaviors, but also identify weaknesses and expose
possible research directions for the next generation of self-
supervised visual learning.
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